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Background

» Protein phosphorylation, a post-translational modification regulated by protein kinases and
phosphatases, plays a crucial role in controlling most aspects of biological processes.

» Understanding how the more than 500 human protein kinases selectively phosphorylate their
specific substrates and contribute to disease-driving signaling pathways in the intact cell remain a
critical challenge.

» The vast majority of phosphorylation sites from large-scale mass spectrometry-based
phosphoproteomic datasets do not have responsible kinases assigned due to the lack of annotated
Kinase-substrate relationships (KSRs).

» Developing algorithms that can accurately expand KSRs for the human kinome has the potential to
transform rational drug design and precision medicine by unbiased assessment of drug effects on
the intact cellular signaling network.

Approach

» Acrivon Therapeutics has developed a proprietary generative Al KSR ensemble model ("KaiSR")
for KSR prediction to enhance Acrivon Predictive Precision Proteomics (AP3) profiling, built from
two transformer models fine-tuned on protein language model ESM-2.

» Fine-tuned model |, trained on KSRs from PhosphoSitePlus (PSP), achieved an area under the
precision recall curve (AUPRC) of 0.83 on the hold-out dataset.

» Fine-tuned model I, trained on KSRs derived from the In Vitro Kinase-to-Phosphosite Database
(iKiP-DB), achieved an AUPRC of 0.92 on the hold-out dataset.

» The KaiSR model is capable of zero-shot prediction, enabling accurate inference of KSRs across
the entire human kinome.

Model architecture and performance

Model training Inference and KSR expansion

‘\\

Dynamic
cutoff

/Km

~120,000 P-sites

P-site 1 AND Kinase A
P-site 1 AND Kinase B

P-site 1 AND Kinase Z

Pretraining by MLM on amino acids

Kinase domain sequences

%¢| = PR Curve
o5l (AUC = 0.83)
0.0 02 04 06

...KKYDGPEVDIWSLGVILYT...
...KDLVSRFLVVQPQNRYT...
...MVHIRREIEIMSSL...

oooooo

P-site N AND Kinase CZ

iKiP_DB

Bl

|

*¢| = PR Curve I
05 (AUC 092) |
|

0.2 0.
R lI

__Hi

Model architecture of Acrivon Therapeutics’ proprietary generative Al KSR prediction model “KaiSR”

Conclusion

» KaiSR , Acrivon Therapeutics’ proprietary generative Al KSR prediction model, accurately expands
the KSR landscape across the entire human kinome.

» KaiSR outperforms existing generative Al or motif-based tools in predicting kinase activity
inference.

» KaiSR provides unique, actionable insights into drug-regulated effects on kinome-wide kinase
activity.

» The expanded KSR network generated by KaiSR enables a novel framework for target
identification and prioritization.

Acrivon Therapeutics’ generative Al ensemble model (KaiSR) accurately predicts and expands proprietary,
actionable kinase-substrate relationships globally for the human kinome
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KaiSR expands KSRs covering the entire human kinome
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KaiSR predicted WEE1 substrates (n = 2,314)
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A) KaiSR-generated kinome-wide KSRs derived from 120,000 phosphosites identified in in-house phosphoproteomic
experiments, with the node size representing the number of KSRs for the individual kinase; B) Example of zero-shot
prediction illustrating WEE1 substrate identification; C) Sequence logo comparison of 15-mer peptide sequences
centered on CHEK1 phosphosites predicted by KaiSR versus curated sites from PSP and iKiP-DB.

Validating KaiSR predictions using in vitro kinase assay (InViKA) cont.

D Kinase LogFC Threshold Adj.P Threshold Sample Successes Sample 5ize Population Successes Population Size  Hypergeometric P-Value 0Odds Ratio
WEE1 3 0.05 16 a7 117 4330 1.406087e-10 0.077645
PLE1 3 0.05 32 210 102 4511 6.346313e-20 8.299625

A) Volcano plots depicting regulated phosphosites induced separately by recombinant WEE1 and PLK1 kinases; B)
Inferred kinase activity from in-house AP3 datasets using InViKA-informed KSRs; C) KaiSR-predicted KSRs reveal
upregulation of kinase activity in each of the two InViKA experiments; D) Enrichment of KaiSR predicted substrates in
the InViKA identified substrates
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KaiSR outperforms other generative Al tools on inferred kinase activity
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A) Comparison of correctly inferred kinase activities across different tools using a combined dataset from three publicly
available drug perturbation studies; B) Correlation of PTM-SEA scores derived from PSP-based KSRs with scores
generated from KSRs predicted by various tools.

KaiSR differentiates ACR-2316 from other WEE1/PKMYT1 inhibitors
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A) Mechanism of WEE1/PKMYT1 regulation of CDK1/CDK2 during the cell cycle; B) AP3 profiling demonstrates strong
activation of CDK1, CDK2, and PLK1 by ACR-2316 using KSRs from PSP; C) Comparison of inferred kinase activities
for five kinases across different drug treatments (200 nM, 60 min) and predicted by various generative Al tools.
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Validating KaiSR predictions using in vitro kinase assay (InViKA)
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KaiSR enabled target identification using real-world data

Identified targets in tiers
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A) Patient numbers with paired tumor-normal phosphoproteomic data and matched overall survival data for each
tumor type in CPTAC; B) Putative target identification based on relative kinase activity within each tumor type; C)
Target stratification based on previously defined tier categories; D) Distribution of inferred kinase activity of all kinases
in LSCC; E) Distribution of inferred kinase activity of FLT4, a top candidate target identified in LSCC; F) Optimal PTM-
SEA score cutoff determination to distinguish survival probabilities between FLT4-high and FLT4-low patients in
LSCC; G) Kaplan-Meier survival curves stratified by the cutoff determined in panel F.
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