Detailed mechanistic understanding of ACR-2316, a novel, clinical-stage WEE1/PKMYT1 inhibitor, rationally designed for superior single-agent activity through potent activation of CDK1, CDK2, and PLK1 using Acrivon's Generative **Phosphoproteomics AP3 platform**

Lei Shi¹, Martina Pasetto², Mohamed Eldeeb², Jessica Hopkins¹, Georgia Mitsa², Nina Lipjankic², Ruban Cornelius², Taronish Dubash¹, Subodh Kumar¹, Marc Isaksson², Shahrzad Rafiei¹, Maria Rodriguez Zabala¹, Calvin Yang¹, Bryan Thornlow¹, Ahmed Youssef¹, Anna-Maria Alves¹, Portia Lombardo¹, William Dahlberg¹, Luka Romero¹, Everett Hay¹, Zachary Best¹, Valentina Siino², Corey Xu¹, Joelle Baddour-Sousounis¹, Reina Improgo¹, Magnus E. Jakobsson², Ayesha Murshid¹, Helén Nilsson², Joon Jung¹, Michail Shipitsin¹, Caroline Wigerup², David A. Proia¹, Kristina Masson¹, Peter Blume-Jensen¹ ¹Acrivon Therapeutics Inc., Watertown, MA, USA, and ²Acrivon AB, Medicon Village, Lund, Sweden

Abstract presentation #357

- Balanced inhibition of WEE1 and PKMYT1 by ACR-2316 leads to defective DNA synthesis and premature mitotic entry, resulting in mitotic catastrophe and potent anti-cancer activity. The biological actions of ACR-2316 can largely be blocked through inhibition of CDK1 or CDK2, key substrates for WEE1 and
- dual WEE1/PKMYT1 inhibitor ACR-2316, enabled a comprehensive analysis of time- and dose-dependent regulation of CDK1 and CDK2 substrates by ACR-2316, further elucidating the predominant pathways un-
- ACR-2316 has advanced into the clinic significantly ahead of schedule and is currently in a Phase 1 clinical trial in subjects with selected high unmet need solid tumor types predicted sensitive to ACR-2316 using
- Early data from the first two dose levels show approximate dose proportionality based on pharmacokinetic analyses and drug target engagement in human PBMCs using Acrivon's clinical mass spectrometry-based AP3 profiling. Finally, clinical activity with significant tumor shrinkage and shrinkage of metastatic lesions

ACRIVON THERAPEUTICS

